non-abelian, supersoluble, monomial
Aliases: (C32×C9).16S3, C3.He3⋊1S3, C33.40(C3⋊S3), C3.6(He3⋊5S3), C3⋊(3- 1+2.S3), C32.4(C33⋊C2), (C3×3- 1+2).9S3, C32.30(He3⋊C2), 3- 1+2.1(C3⋊S3), (C3×C9).8(C3⋊S3), (C3×C3.He3)⋊2C2, SmallGroup(486,188)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C3.He3 — (C32×C9).S3 |
Generators and relations for (C32×C9).S3
G = < a,b,c,d,e | a3=b3=c9=e2=1, d3=c3, ab=ba, ac=ca, dad-1=ac3, eae=abc6, bc=cb, bd=db, ebe=b-1, dcd-1=a-1bc, ece=c-1, ede=c6d2 >
Subgroups: 790 in 114 conjugacy classes, 35 normal (8 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, C9⋊C6, C9⋊S3, C3×C3⋊S3, C3.He3, C32×C9, C3×3- 1+2, 3- 1+2.S3, C3×C9⋊S3, C33.S3, C3×C3.He3, (C32×C9).S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, 3- 1+2.S3, He3⋊5S3, (C32×C9).S3
Character table of (C32×C9).S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | 9G | 9H | 9I | 9J | 9K | 9L | 9M | 9N | 9O | 9P | 9Q | 9R | |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 81 | 81 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ13 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | orthogonal lifted from S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ16 | 3 | 1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ17 | 3 | -1 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ18 | 3 | -1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ19 | 3 | 1 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ21 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ22 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ23 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ24 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ25 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ26 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ27 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ28 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 2ζ98-ζ94+ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 3- 1+2.S3 |
ρ29 | 6 | 0 | 6 | -3 | -3 | -3 | -3-3√-3 | -3+3√-3 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
ρ30 | 6 | 0 | 6 | -3 | -3 | -3 | -3+3√-3 | -3-3√-3 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊5S3 |
(1 28 61)(2 29 62)(3 30 63)(4 31 55)(5 32 56)(6 33 57)(7 34 58)(8 35 59)(9 36 60)(10 37 64)(11 38 65)(12 39 66)(13 40 67)(14 41 68)(15 42 69)(16 43 70)(17 44 71)(18 45 72)(19 49 79)(20 50 80)(21 51 81)(22 52 73)(23 53 74)(24 54 75)(25 46 76)(26 47 77)(27 48 78)
(1 31 58)(2 32 59)(3 33 60)(4 34 61)(5 35 62)(6 36 63)(7 28 55)(8 29 56)(9 30 57)(10 37 64)(11 38 65)(12 39 66)(13 40 67)(14 41 68)(15 42 69)(16 43 70)(17 44 71)(18 45 72)(19 46 73)(20 47 74)(21 48 75)(22 49 76)(23 50 77)(24 51 78)(25 52 79)(26 53 80)(27 54 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 10 19 4 13 22 7 16 25)(2 17 26 5 11 20 8 14 23)(3 15 24 6 18 27 9 12 21)(28 43 52 31 37 46 34 40 49)(29 41 50 32 44 53 35 38 47)(30 39 48 33 42 51 36 45 54)(55 70 79 58 64 73 61 67 76)(56 68 77 59 71 80 62 65 74)(57 66 75 60 69 78 63 72 81)
(2 9)(3 8)(4 7)(5 6)(10 25)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)(17 27)(18 26)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 63)(36 62)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 81)(45 80)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 72)(54 71)
G:=sub<Sym(81)| (1,28,61)(2,29,62)(3,30,63)(4,31,55)(5,32,56)(6,33,57)(7,34,58)(8,35,59)(9,36,60)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,49,79)(20,50,80)(21,51,81)(22,52,73)(23,53,74)(24,54,75)(25,46,76)(26,47,77)(27,48,78), (1,31,58)(2,32,59)(3,33,60)(4,34,61)(5,35,62)(6,36,63)(7,28,55)(8,29,56)(9,30,57)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,10,19,4,13,22,7,16,25)(2,17,26,5,11,20,8,14,23)(3,15,24,6,18,27,9,12,21)(28,43,52,31,37,46,34,40,49)(29,41,50,32,44,53,35,38,47)(30,39,48,33,42,51,36,45,54)(55,70,79,58,64,73,61,67,76)(56,68,77,59,71,80,62,65,74)(57,66,75,60,69,78,63,72,81), (2,9)(3,8)(4,7)(5,6)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,81)(45,80)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,72)(54,71)>;
G:=Group( (1,28,61)(2,29,62)(3,30,63)(4,31,55)(5,32,56)(6,33,57)(7,34,58)(8,35,59)(9,36,60)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,49,79)(20,50,80)(21,51,81)(22,52,73)(23,53,74)(24,54,75)(25,46,76)(26,47,77)(27,48,78), (1,31,58)(2,32,59)(3,33,60)(4,34,61)(5,35,62)(6,36,63)(7,28,55)(8,29,56)(9,30,57)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,10,19,4,13,22,7,16,25)(2,17,26,5,11,20,8,14,23)(3,15,24,6,18,27,9,12,21)(28,43,52,31,37,46,34,40,49)(29,41,50,32,44,53,35,38,47)(30,39,48,33,42,51,36,45,54)(55,70,79,58,64,73,61,67,76)(56,68,77,59,71,80,62,65,74)(57,66,75,60,69,78,63,72,81), (2,9)(3,8)(4,7)(5,6)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,81)(45,80)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,72)(54,71) );
G=PermutationGroup([[(1,28,61),(2,29,62),(3,30,63),(4,31,55),(5,32,56),(6,33,57),(7,34,58),(8,35,59),(9,36,60),(10,37,64),(11,38,65),(12,39,66),(13,40,67),(14,41,68),(15,42,69),(16,43,70),(17,44,71),(18,45,72),(19,49,79),(20,50,80),(21,51,81),(22,52,73),(23,53,74),(24,54,75),(25,46,76),(26,47,77),(27,48,78)], [(1,31,58),(2,32,59),(3,33,60),(4,34,61),(5,35,62),(6,36,63),(7,28,55),(8,29,56),(9,30,57),(10,37,64),(11,38,65),(12,39,66),(13,40,67),(14,41,68),(15,42,69),(16,43,70),(17,44,71),(18,45,72),(19,46,73),(20,47,74),(21,48,75),(22,49,76),(23,50,77),(24,51,78),(25,52,79),(26,53,80),(27,54,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,10,19,4,13,22,7,16,25),(2,17,26,5,11,20,8,14,23),(3,15,24,6,18,27,9,12,21),(28,43,52,31,37,46,34,40,49),(29,41,50,32,44,53,35,38,47),(30,39,48,33,42,51,36,45,54),(55,70,79,58,64,73,61,67,76),(56,68,77,59,71,80,62,65,74),(57,66,75,60,69,78,63,72,81)], [(2,9),(3,8),(4,7),(5,6),(10,25),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19),(17,27),(18,26),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,63),(36,62),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,81),(45,80),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,72),(54,71)]])
Matrix representation of (C32×C9).S3 ►in GL8(𝔽19)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 18 | 0 | 18 | 18 | 18 | 18 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
18 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 7 | 0 | 0 |
0 | 0 | 0 | 7 | 5 | 0 | 7 | 5 |
0 | 0 | 14 | 2 | 0 | 14 | 14 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 18 | 18 | 18 | 17 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 18 |
0 | 0 | 18 | 18 | 18 | 18 | 18 | 17 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(19))| [0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,1,0,0,0,18,0,0,18,18,0,0,1,0,0,0,0,0,1,0,0,18,0,0,0,0,0,1,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,5,7,0,0,0,14,0,0,12,17,0,0,7,2,0,0,0,0,2,14,5,0,0,0,0,0,5,7,0,14,0,0,0,0,0,0,7,14,0,0,0,0,0,0,5,2],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,0,1,0,0,0,0,0,18,0,0,1,0,0,0,0,18,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,17,18,0,0,1,1],[1,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,1,0,18,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,18,17,1,1] >;
(C32×C9).S3 in GAP, Magma, Sage, TeX
(C_3^2\times C_9).S_3
% in TeX
G:=Group("(C3^2xC9).S3");
// GroupNames label
G:=SmallGroup(486,188);
// by ID
G=gap.SmallGroup(486,188);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,3134,986,4755,303,453,11344,1096,11669]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^9=e^2=1,d^3=c^3,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^3,e*a*e=a*b*c^6,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b*c,e*c*e=c^-1,e*d*e=c^6*d^2>;
// generators/relations
Export