Copied to
clipboard

G = (C32×C9).S3order 486 = 2·35

16th non-split extension by C32×C9 of S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: (C32×C9).16S3, C3.He31S3, C33.40(C3⋊S3), C3.6(He35S3), C3⋊(3- 1+2.S3), C32.4(C33⋊C2), (C3×3- 1+2).9S3, C32.30(He3⋊C2), 3- 1+2.1(C3⋊S3), (C3×C9).8(C3⋊S3), (C3×C3.He3)⋊2C2, SmallGroup(486,188)

Series: Derived Chief Lower central Upper central

C1C32C3×C3.He3 — (C32×C9).S3
C1C3C32C3×C9C3.He3C3×C3.He3 — (C32×C9).S3
C3×C3.He3 — (C32×C9).S3
C1

Generators and relations for (C32×C9).S3
 G = < a,b,c,d,e | a3=b3=c9=e2=1, d3=c3, ab=ba, ac=ca, dad-1=ac3, eae=abc6, bc=cb, bd=db, ebe=b-1, dcd-1=a-1bc, ece=c-1, ede=c6d2 >

Subgroups: 790 in 114 conjugacy classes, 35 normal (8 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, 3- 1+2, 3- 1+2, C33, C3×D9, C9⋊C6, C9⋊S3, C3×C3⋊S3, C3.He3, C32×C9, C3×3- 1+2, 3- 1+2.S3, C3×C9⋊S3, C33.S3, C3×C3.He3, (C32×C9).S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, 3- 1+2.S3, He35S3, (C32×C9).S3

Character table of (C32×C9).S3

 class 123A3B3C3D3E3F3G3H6A6B9A9B9C9D9E9F9G9H9I9J9K9L9M9N9O9P9Q9R
 size 181222233668181666666666181818181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111-1-1111111111111111111    linear of order 2
ρ3202-1-1-122-1-1002-1-1-1-1-1-122-1-1-1222-1-1-1    orthogonal lifted from S3
ρ4202-1-1-122-1-100-1222-1-1-1-1-1-1-122-1-1-1-12    orthogonal lifted from S3
ρ5202-1-1-122-1-100-1-1-1-1222-1-1-12-12-1-12-1-1    orthogonal lifted from S3
ρ6202222222200-1-1-1-1-1-1-1-1-1-1-12-12-12-1-1    orthogonal lifted from S3
ρ7202-1-1-122-1-100-1-1-1-1222-1-1-1-12-1-12-12-1    orthogonal lifted from S3
ρ8202222222200222222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ9202222222200-1-1-1-1-1-1-1-1-12-1-12-1-1-12-1    orthogonal lifted from S3
ρ10202-1-1-122-1-1002-1-1-1-1-1-122222-1-1-1-1-1-1    orthogonal lifted from S3
ρ11202-1-1-122-1-100-1222-1-1-1-1-12-1-1-1-122-1-1    orthogonal lifted from S3
ρ12202-1-1-122-1-100-1-1-1-1222-1-12-1-1-12-1-1-12    orthogonal lifted from S3
ρ13202-1-1-122-1-1002-1-1-1-1-1-122-1-1-1-1-1-1222    orthogonal lifted from S3
ρ14202222222200-1-1-1-1-1-1-1-1-1-12-1-1-12-1-12    orthogonal lifted from S3
ρ15202-1-1-122-1-100-1222-1-1-1-1-1-12-1-12-1-12-1    orthogonal lifted from S3
ρ16313333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ3ζ32000000000000000000    complex lifted from He3⋊C2
ρ173-13333-3+3-3/2-3-3-3/2-3+3-3/2-3-3-3/2ζ65ζ6000000000000000000    complex lifted from He3⋊C2
ρ183-13333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ6ζ65000000000000000000    complex lifted from He3⋊C2
ρ19313333-3-3-3/2-3+3-3/2-3-3-3/2-3+3-3/2ζ32ζ3000000000000000000    complex lifted from He3⋊C2
ρ2060-36-3-300000098+2ζ979492ζ95+2ζ94929989492998+2ζ9794929894929ζ95+2ζ9492998+2ζ979492ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ2160-3-36-30000009894929989492998+2ζ979492ζ95+2ζ949299894929ζ95+2ζ9492998+2ζ97949298+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2260-3-36-3000000ζ95+2ζ94929ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ9492998+2ζ9794929894929989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2360-36-3-3000000989492998+2ζ979492ζ95+2ζ949299894929ζ95+2ζ9492998+2ζ979492989492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2460-3-3-360000009894929ζ95+2ζ94929989492998+2ζ97949298+2ζ9794929894929ζ95+2ζ9492998+2ζ979492ζ95+2ζ94929000000000    orthogonal lifted from 3- 1+2.S3
ρ2560-3-3-3600000098+2ζ979492989492998+2ζ979492ζ95+2ζ94929ζ95+2ζ9492998+2ζ9794929894929ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ2660-36-3-3000000ζ95+2ζ94929989492998+2ζ979492ζ95+2ζ9492998+2ζ9794929894929ζ95+2ζ94929989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2760-3-3-36000000ζ95+2ζ9492998+2ζ979492ζ95+2ζ9492998949299894929ζ95+2ζ9492998+2ζ979492989492998+2ζ979492000000000    orthogonal lifted from 3- 1+2.S3
ρ2860-3-36-300000098+2ζ97949298+2ζ979492ζ95+2ζ94929989492998+2ζ9794929894929ζ95+2ζ94929ζ95+2ζ949299894929000000000    orthogonal lifted from 3- 1+2.S3
ρ29606-3-3-3-3-3-3-3+3-33+3-3/23-3-3/200000000000000000000    complex lifted from He35S3
ρ30606-3-3-3-3+3-3-3-3-33-3-3/23+3-3/200000000000000000000    complex lifted from He35S3

Smallest permutation representation of (C32×C9).S3
On 81 points
Generators in S81
(1 28 61)(2 29 62)(3 30 63)(4 31 55)(5 32 56)(6 33 57)(7 34 58)(8 35 59)(9 36 60)(10 37 64)(11 38 65)(12 39 66)(13 40 67)(14 41 68)(15 42 69)(16 43 70)(17 44 71)(18 45 72)(19 49 79)(20 50 80)(21 51 81)(22 52 73)(23 53 74)(24 54 75)(25 46 76)(26 47 77)(27 48 78)
(1 31 58)(2 32 59)(3 33 60)(4 34 61)(5 35 62)(6 36 63)(7 28 55)(8 29 56)(9 30 57)(10 37 64)(11 38 65)(12 39 66)(13 40 67)(14 41 68)(15 42 69)(16 43 70)(17 44 71)(18 45 72)(19 46 73)(20 47 74)(21 48 75)(22 49 76)(23 50 77)(24 51 78)(25 52 79)(26 53 80)(27 54 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 10 19 4 13 22 7 16 25)(2 17 26 5 11 20 8 14 23)(3 15 24 6 18 27 9 12 21)(28 43 52 31 37 46 34 40 49)(29 41 50 32 44 53 35 38 47)(30 39 48 33 42 51 36 45 54)(55 70 79 58 64 73 61 67 76)(56 68 77 59 71 80 62 65 74)(57 66 75 60 69 78 63 72 81)
(2 9)(3 8)(4 7)(5 6)(10 25)(11 24)(12 23)(13 22)(14 21)(15 20)(16 19)(17 27)(18 26)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 63)(36 62)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 81)(45 80)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 72)(54 71)

G:=sub<Sym(81)| (1,28,61)(2,29,62)(3,30,63)(4,31,55)(5,32,56)(6,33,57)(7,34,58)(8,35,59)(9,36,60)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,49,79)(20,50,80)(21,51,81)(22,52,73)(23,53,74)(24,54,75)(25,46,76)(26,47,77)(27,48,78), (1,31,58)(2,32,59)(3,33,60)(4,34,61)(5,35,62)(6,36,63)(7,28,55)(8,29,56)(9,30,57)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,10,19,4,13,22,7,16,25)(2,17,26,5,11,20,8,14,23)(3,15,24,6,18,27,9,12,21)(28,43,52,31,37,46,34,40,49)(29,41,50,32,44,53,35,38,47)(30,39,48,33,42,51,36,45,54)(55,70,79,58,64,73,61,67,76)(56,68,77,59,71,80,62,65,74)(57,66,75,60,69,78,63,72,81), (2,9)(3,8)(4,7)(5,6)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,81)(45,80)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,72)(54,71)>;

G:=Group( (1,28,61)(2,29,62)(3,30,63)(4,31,55)(5,32,56)(6,33,57)(7,34,58)(8,35,59)(9,36,60)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,49,79)(20,50,80)(21,51,81)(22,52,73)(23,53,74)(24,54,75)(25,46,76)(26,47,77)(27,48,78), (1,31,58)(2,32,59)(3,33,60)(4,34,61)(5,35,62)(6,36,63)(7,28,55)(8,29,56)(9,30,57)(10,37,64)(11,38,65)(12,39,66)(13,40,67)(14,41,68)(15,42,69)(16,43,70)(17,44,71)(18,45,72)(19,46,73)(20,47,74)(21,48,75)(22,49,76)(23,50,77)(24,51,78)(25,52,79)(26,53,80)(27,54,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,10,19,4,13,22,7,16,25)(2,17,26,5,11,20,8,14,23)(3,15,24,6,18,27,9,12,21)(28,43,52,31,37,46,34,40,49)(29,41,50,32,44,53,35,38,47)(30,39,48,33,42,51,36,45,54)(55,70,79,58,64,73,61,67,76)(56,68,77,59,71,80,62,65,74)(57,66,75,60,69,78,63,72,81), (2,9)(3,8)(4,7)(5,6)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(16,19)(17,27)(18,26)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,63)(36,62)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,81)(45,80)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,72)(54,71) );

G=PermutationGroup([[(1,28,61),(2,29,62),(3,30,63),(4,31,55),(5,32,56),(6,33,57),(7,34,58),(8,35,59),(9,36,60),(10,37,64),(11,38,65),(12,39,66),(13,40,67),(14,41,68),(15,42,69),(16,43,70),(17,44,71),(18,45,72),(19,49,79),(20,50,80),(21,51,81),(22,52,73),(23,53,74),(24,54,75),(25,46,76),(26,47,77),(27,48,78)], [(1,31,58),(2,32,59),(3,33,60),(4,34,61),(5,35,62),(6,36,63),(7,28,55),(8,29,56),(9,30,57),(10,37,64),(11,38,65),(12,39,66),(13,40,67),(14,41,68),(15,42,69),(16,43,70),(17,44,71),(18,45,72),(19,46,73),(20,47,74),(21,48,75),(22,49,76),(23,50,77),(24,51,78),(25,52,79),(26,53,80),(27,54,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,10,19,4,13,22,7,16,25),(2,17,26,5,11,20,8,14,23),(3,15,24,6,18,27,9,12,21),(28,43,52,31,37,46,34,40,49),(29,41,50,32,44,53,35,38,47),(30,39,48,33,42,51,36,45,54),(55,70,79,58,64,73,61,67,76),(56,68,77,59,71,80,62,65,74),(57,66,75,60,69,78,63,72,81)], [(2,9),(3,8),(4,7),(5,6),(10,25),(11,24),(12,23),(13,22),(14,21),(15,20),(16,19),(17,27),(18,26),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,63),(36,62),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,81),(45,80),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,72),(54,71)]])

Matrix representation of (C32×C9).S3 in GL8(𝔽19)

01000000
1818000000
000180000
001180000
00001000
00000100
00010001
0018018181818
,
01000000
1818000000
00100000
00010000
00001000
00000100
00000010
00000001
,
1818000000
10000000
005120000
007170000
00002500
000014700
00075075
00142014142
,
10000000
01000000
00181818181817
000000118
00100000
00010000
00000001
00001001
,
11000000
018000000
00010000
00100000
000000118
00181818181817
00001001
00000001

G:=sub<GL(8,GF(19))| [0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,1,0,0,0,18,0,0,18,18,0,0,1,0,0,0,0,0,1,0,0,18,0,0,0,0,0,1,0,18,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,5,7,0,0,0,14,0,0,12,17,0,0,7,2,0,0,0,0,2,14,5,0,0,0,0,0,5,7,0,14,0,0,0,0,0,0,7,14,0,0,0,0,0,0,5,2],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,0,1,0,0,0,0,0,18,0,0,1,0,0,0,0,18,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,17,18,0,0,1,1],[1,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,1,0,18,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,18,17,1,1] >;

(C32×C9).S3 in GAP, Magma, Sage, TeX

(C_3^2\times C_9).S_3
% in TeX

G:=Group("(C3^2xC9).S3");
// GroupNames label

G:=SmallGroup(486,188);
// by ID

G=gap.SmallGroup(486,188);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,49,3134,986,4755,303,453,11344,1096,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^9=e^2=1,d^3=c^3,a*b=b*a,a*c=c*a,d*a*d^-1=a*c^3,e*a*e=a*b*c^6,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b*c,e*c*e=c^-1,e*d*e=c^6*d^2>;
// generators/relations

Export

Character table of (C32×C9).S3 in TeX

׿
×
𝔽